A Classification of Technology and Techniques Used to Contend with Holes in Wireless Sensor Networks

Milanović, Marija¹; Filipović, Vladimir²; Milutinović, Veljko³

Abstract - This work presents a novel classification, ALET, of technology and techniques used for handling holes in Wireless Sensor Networks. We distinguish redeployment, via aircraft or robot, and rationalization, via energy replenishment or geographic routing. A qualitative comparison of these approaches is also provided.

(a)

Class	Barrier Retreatment	Barrier Reduction	Barrier Elimination	Barrier Detour
	(via aircraft)	(via robot)	(via energy replenishment)	(via multihop)
Symbol	ΔA凶 (Eagle)	(Pigeon) لا	∆E⊅(Phoenix)	∆T ⊅ (Sparrow)
Cost	Н	М	L	N
Energy consumption	Ν	М	L	Н
Performance	Н	М	Μ	L
CostEnergyPerformance	М	М	Μ	L
Application constraints	Н	М	Μ	L
Technology constraints	Н	М	Μ	L
Scalability	Н	М	Μ	Н
Robustness	Н	L	Μ	М
Adaptability	Н	L	L	М
Energy sustainability	М	М	Н	L
Reliability	Н	М	L	М
Mobility	Н	Н	Μ	N
Timeliness	М	L	Μ	М
Availability	L	Μ	M	Н

(b)

Figure 1: A summary of ALET (A refers to minimization of ΔA - area of not covered; L refers to minimization of ΔL - length to traverse; E refers to maximization of ΔE - energy to fulfill goals; T refers to maximization of ΔT - time to traverse): (a) A classification of ALET systems (bridging in WSN); (b) A tabular presentation of major ALET issues (H stands for High, M for Medium, L for Low, and N for Negligible).

¹ Faculty of Mathematics, University of Belgrade, Belgrade, Serbia, e-mail: marija.milanovic@gmail.com

² Faculty of Mathematics, University of Belgrade, Belgrade, Serbia, e-mail: vladofilipovic@hotmail.com

³ School of Electrical Engineering, University of Belgrade, Serbia, e-mail: vm@etf.rs